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1.1 電磁気

• 電磁界はMaxwellの方程式で記述される

• クーロンの法則，アンペアの法則はMaxwell
の方程式より導出される
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1.1.1 静電界
• 電荷

–物質や原子・電子などが帯びている電気やその
量を指す

–単位はクーロン C

–物体が電荷を持った状態を帯電という
–電気には正負がある。電荷にも正電荷・負電荷
がある

• 電荷の保存性
–閉じた系において，電荷全体の合計は一定。す
なわち保存性がある（発生・消滅しない）



1.1.1 静電界
• クーロンの法則

–電荷を持った帯電体の近くに他の帯電体を置くと，
両者には反発力or吸引力が働く（クーロン力）

– ２つの帯電体の間に働く力は，電荷量の積に比
例し，距離rの二乗に反比例する

• ２つの電荷をQ1, Q2,両者の距離をrとすると，両者に
作用する力Fは

[ ]N
r

QQ
kF

2
21=

r

k
επε04

1=

[ ]mF /:0 真空の誘電率ε

比誘電率:rε



1.1.1 静電界
• クーロンの法則

–半径rの球の中心に電荷Q1を置くと，Q1から発生

する力（電束は）は全方位に広がる。

–球の表面積は4πr2より，球面上での電束密度は
4πr2に反比例する。

–球面上に置いた電荷Q2に作用する力は，球面上

の電束密度に比例する。
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1.1.1 静電界
• 電界

–電荷を持った帯電体の力が作用する場
• 電荷（帯電体）が静止している場合は静電界

– 極限をとっているのは，厳密には持ってきた電荷によって電
荷分布が変動するため

– 力の方向がベクトルであるため，電界もベクトルとなる

• 電界中の一点に，最初の電荷分布を乱さない電荷Q
を与えたとき，これに作用する力Fは
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1.1.1 静電界
• 電位差

–電界中において，点Aから点Bまで単位電荷を運
ぶのに必要とする仕事

• 電界E中で，電荷qに働く力
• この力に逆らって，電荷qをΔs動かすのに必要な仕事

• 微小変位を点Aから点Bで表す
• q=1（単位電荷）として
• VBA点Bと点Aの電位差

– 点A,点Bが定まれば，途中の経路に関わらず一定
» 電界内の一点O，二点A,Bを考える。
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1.1.1 静電界
• 電位

–無限遠点との電位差
• 無限遠点を電界0にとり，基準とする。

–点電荷Qより距離rの点の電位Vr
• 電界内に電位の基準を一点とり（無限遠点∞），各点
の基準点に対する電位Vは

• 点Oにある電荷Qの生じる電界内で，微小電荷を点
A(r1)からB(r2)まで運ぶのに要する仕事
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1.1.1 静電界
• 電位

–点電荷Qより距離rの点の電位Vr
• q=1, r1=∞，r2=rとすると
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1.1.1 静電界
• ガウスの定理

– 電界内に任意の閉曲面Sをとり，nをその面上の一点の
外向き法線方向の単位長ベクトルとすると，球面全体を
通る電束は

• 但し，左辺の面積分は閉曲面全体の積分。ΣQは，この閉曲面
に囲まれた電荷の和。

– 証明
• 電界の中の一つの電荷ΔQを考える。
• 曲面Sの微小面積ΔSをとり，ΔQによるこの点の電界の大きさを
ΔEとすると
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1.1.1 静電界
–証明つづき

• 微小面積ΔSに対するEの垂直成分をEnで表せる

• ΔSを底面として，ΔQを頂角とする円錐をΔQを中心
とする半径rの球が切り取る部分をΔS’とすると

• 従って

• ΔS’/r2は円錐を囲む立体角に等しく，Δωとして
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1.1.1 静電界
–証明つづき

• すなわちΔSが積分に寄与する分は，距離rに無関係
で，立体角のみに関係する

• 左辺をS面全体について積分すると，Δωの和，すな
わちΔQからみた全立体角となる。

• ΔQが面Sの外にあるとき
– 同一の立体角の部分がΔS1, ΔS2をとる

– ΔS1, ΔS2 では法線の方向は逆なので，面全体では
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1.1.1 静電界
–ガウスの定理の物理的な意味

• Enは垂直方向の単位面積当りの電気力線数。すなわ
ち面を通り抜ける電気力線の面積密度

• 左辺の積分は，面Sを出て行く電気力線の総数
• 右辺のΣQは面内の全電荷

– 面内にある単位電荷ごとに1/ε0本の電気力線が出て行く
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1.1.1 静電界
• 静電容量

– ２つの導体間の静電容量の定義
• 二個の導体があり一方にQ，他方に-Qの電荷を与え
たとき，二導体間の電位差がVである場合に，二導体
間の静電容量は次式で表される。

– n個の導体を考える。
– 導体mだけに単位電荷を与え，他の導体の電荷が0であると
き，各導体の電位

– 導体mに電荷Qmを与え，他の導体が零電荷のとき，各導体
の電位
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1.1.1 静電界

• 静電容量
– 導体が各々電荷Q1, Q2,…, Qnを持つとき，各導体の電位は
重ねの理により

– Cに蓄えられるエネルギー
• 最初に電荷を与える時は，導体の電位は低く，単位電
荷あたりに要する仕事は小さいが，導体が充電される
に従って，電位はVに近づく。だから蓄えられているエ
ネルギーはQVにはならない。
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1.1.1 静電界
– Cに蓄えられるエネルギー

• n個の導体を考える。最初，各導体の電位は全て0とする。
• 導体1に微小電荷ΔQずつ運び，これでQ1まで充電する。
• 途中，電位がVの時にΔQを運ぶのに要する仕事はVΔQ
• 全体の所要エネルギー

• 他の導体の電荷は0だから，電位V時の電荷をQとすると

• 従って導体1に対して必要なエネルギーは

• 同様に導体2に対して必要なエネルギー

• 全体として

• すなわち
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1.1.2 電流と磁界
• 静磁界と静電界の対応関係

–場の法則についての対応関係

–物理量の対応関係

–透磁率と誘電率の対応関係
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1.1.2 電流と磁界
• 静磁界と静電界の対応関係

–電気分極P,磁気分極をPmとすると

–分極した誘電体における電界

• 分極電荷は真空中に作る電界と等価
• 微小体積Δvにある分極電荷ρ’Δvは，距離rの点に
放射状電界を作る

• 磁化された磁性体において，体積密度が次式で与え
られる量がある
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1.1.2 電流と磁界
• 静磁界と静電界の対応関係

• 微小体積ΔvにあるρmΔvは，距離rの点に放射状磁
界を作る

• 体積密度ρmを持った量は，誘電体の分極電荷に対
応。磁極と呼ぶ。

• 磁極QmがH0なる磁界に置かれたとき，働く力

• 磁極Qmの作る磁界の強さ

• 磁極Qm1,Qm2の間に働く力
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1.1.2 電流と磁界
• ビオ・サバールの法則

–電流の生成する磁束密度に対する法則
• 真空中において，電流Iが流れる長さΔlの部分が，r離
れた点Pに生じる磁束密度ΔBの大きさ

– 方向は，PとΔlとを含む面に垂直

– 向きは右ねじの法則に従う
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1.1.2 電流と磁界
• アンペアの周回積分の法則

–導体Cに電流Iが流れた場合点Pの磁束密度はB。
微小変位dsに対するBdsを考えると

• ビオ・サバールの法則より，真空中において電流Iの流
れるΔlの部分がr離れた点Pに生じる磁束密度は

• 全電流の作る磁束は
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1.1.2 電流と磁界
• 磁気回路

–磁界Hと磁束Bの関係
• μ:透磁率。磁束密度と磁界の強さの関係を与える

• 磁束の通路を電流の通路に見立てて扱う（磁気回路）

• 一つの閉回路Cの起磁力F

• AB間の磁気抵抗R
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1.1.2 電流と磁界
• 電磁力

–電流は電荷の移動であり，磁界中を流れる電流
に対して働く力

• 電荷qの荷電体が，導体の単位長あたりN個あり，こ
れが速度vで動いているとき，電流は

• 荷電体一個に働く力F
– q:電荷，v:速度，B:磁束密度

• 電流Iが流れる導体の単位長に働く力F0
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1.1.3 電磁誘導
• ファラデーの法則

–一つの回路に電磁誘導によって生じる起電力は，
この回路に鎖交する磁束数の減少する割合に比例
する

• レンツの法則
–電磁誘導によって生じる起電力は，磁束変化を妨
げる向きの電流を流す向きに発生する

• ノイマン則
–鎖交磁束数の減少の割合に等しい起電力を生じる

• Φ[Wb]:鎖交する全磁束
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1.1.3 電磁誘導
• 自己インダクタンスと相互インダクタンス

– I1, I2, I3, …各々の作る磁束のうち， I1, と鎖交する
磁束数をφ11, φ12, φ13,…とすると

–φ11, φ12, φ13,…は各々それを作る電流に比例

( )L+Φ+Φ+Φ=

×=

×=

∑
∑

3322112
1

2
1

2
1

III

W

電流と鎖交する電流電流

磁束と鎖交する電流磁束磁気エネルギー

L+Φ+Φ+Φ=Φ 1312111

1111 IL=Φ 21212 IM=Φ 31313 IM=Φ

L+++=Φ 313212111 IMIMIL



1.1.3 電磁誘導
• 自己インダクタンスと相互インダクタンス

– L:自己インダクタンス
• 磁束を作る回路自身に鎖交する磁束に対するもの

– M:相互インダクタンス
• 磁束を作る回路と鎖交する磁束が別の回路

– 飽和のような現象がなければ

1111 IL=Φ

21212 IM=Φ
31313 IM=Φ

L141312 MMM ==



1.1.3 電磁誘導
• コイルに蓄えられるエネルギー

–自己インダクタンスHのコイルの電流を0からIAに増
加させることを考える。

• Lの電流を増加させると，Lの端子に逆起電力が発生す
る

• 逆起電力に打ち勝って，電流を増加させるのに必要な電
力

• 電流が0からIAに達するまでに必要なエネルギー
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1.2 電気回路

• オームの法則
– R:抵抗，V:起電力，I:電流

• ジュール熱
–抵抗での消費電力

–消費電力量=消費電力を時間積分したもの

IRV =

R

V
RIVIW

2
2 ===

[ ] [ ]Cal
tRI

JtRIQ
185.4

2
2 ==



1.2 電気回路
1.2.1 直流回路

• キルヒホッフの法則
– KCL（電流則）

• 任意の節点に流入する電流の合計は0

– KVL（電圧則）
• 任意の閉路について，各部の電圧を合計すると0

• テブナン・ノートンの等価回路
– テブナンの定理

• 電圧源，電流源と抵抗からなる回路は，抵抗と電圧源の直列等
価回路であらわすことができる。

– ノートンの定理
• 電圧源，電流源と抵抗からなる回路は，抵抗と電流源の並列等
価回路であらわすことができる。



1.2 電気回路
1.2.2 交流回路

• 交流電圧
–瞬時値

• Em:振幅，ω:角周波数，θ:位相（遅れ負，進み正）

–平均値

–絶対値の平均

–二乗平均（実効値）
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1.2 電気回路
1.2.2 交流回路

• インピーダンス
–周波数fの正弦波に対する，複素数で表した

R,L,Cの抵抗値

–直列接続

–並列接続
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1.2 電気回路
1.2.2 交流回路

• インピーダンス
–極座標表示

• 大きさ
• 角度
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1.2 電気回路
1.2.2 交流回路

• 重ね合わせの理
–電源とインピーダンスで構成される回路の状態は

• 電流源を開放したときの電圧・電流
• 電圧源を短絡したときの電圧・電流
の和で表される
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1.2 電気回路
1.2.2 交流回路

• 交流回路の電力
–交流電圧，電流

• 瞬時値
• フェーザ

• 電圧を基準にすると，電流は位相が 遅れる

–平均電力
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1.2 電気回路
1.2.2 交流回路

• 交流回路の電力
–複素電力

• フェーザで表した電圧・電流で求める
• 遅れの無効電力を正とした場合の電力

– P:有効電力は平均電力に等しい
– Q:無効電力は交流特有の概念

( )

( ) ( )ei
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1.2 電気回路
1.2.3 三相交流回路

• 対称三相交流(電圧)
–振幅が等しく，位相が120度ずつ異なる3つの正
弦波(電圧)

( )
( ) π

π

πω
πω

ω

3
2

3
2

3
2

3
2

sin2

sin2

sin2

j
cmc

j
bmb

ama

eEEtEe

eEEtEe

EEtEe

&&

&&

&&

=⇔+=
=⇔−=

=⇔=
−

A相基準

但し， とすると
π3

2jea =

123 == πjea
01 2 =++ aa

2
3

2
1 ja +−=

2
3

2
12 ja −−=



1.2 電気回路
1.2.3 三相交流回路

• Y結線
–各相の起電力の終端を，共通の中性点Nに接続
した三相交流の接続方法

• 対称な場合

• Δ結線
–各起電力の終端を，他の起電力の始端に接続し
た三相交流の接続方法

–線間電圧は，相電圧の√3倍。位相がπ/6進む
（Y-Δ変換）

( ) 01 2 =++=++ EaaEEE cba
&&&&

EeEEE j
baab

&&&& 63
π
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1.2 電気回路
1.2.3 三相交流回路

• V結線
–Δ結線における電源の一つを外したもの

• 変圧器の電圧・電流間には30°の位相差が発生

• 変圧器の利用率

• V結線時の許容出力は，変圧器容量をPとすると

%6.86
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3
30cos ==°

[ ]VAPP 3
2

3
2 = 利用率悪い



1.2 電気回路
1.2.3 三相交流回路

• 三相四線式
–平衡負荷時

• 電源電圧が対称（平衡）で，負荷が三相平衡の時，中
性線電流は流れない

• 電源・負荷共に三相平衡の場合，各相の電圧・電流は
位相が2/3π異なるのみとなる。

– 正相で現された単相等価回路で扱える。
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1.2 電気回路
1.2.3 三相交流回路

• 負荷のΔY変換
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1.2 電気回路
1.2.3 三相交流回路

• 負荷のΔY変換

–任意のI1,I2に対して成立するためには

–負荷のYΔ変換
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1.2 電気回路
1.2.3 三相交流回路

• ミルマンの定理
– （全電圧の定理）電圧源が並列接続された電気
回路の出力電圧を求める定理

• 電圧源Vi，回路のアドミタンスYi，出力電圧V0とすると

–三相三線式不平衡回路の解析
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1.2 電気回路
1.2.3 三相交流回路

• ミルマンの定理による三相三線式不平衡回路の解析
– 電源の中性点Nと，負荷の中性点N’の電位差Eoに対して

– 三相三線式では中性線電流は流れないため

– E0を代入して，Ia,Ib,Icを求めることができる
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1.2 電気回路
1.2.4 過渡現象並びにひずみ波

• 直流回路の過渡解析
– RL直列回路

• 磁束の時間変化率が電圧に相当

• KVLより

• 微分方程式の解

• 微分演算子 をラプラス変換（制御で説明）して解く
方法もある
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1.2 電気回路
1.2.4 過渡現象並びにひずみ波

• 直流回路の過渡解析
– ラプラス変換での解き方

ラプラス変換
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1.2 電気回路
1.2.4 過渡現象並びにひずみ波

• 直流回路の過渡解析
– RC直列回路

• 電荷の時間変化率が電流に相当

• KVL

• 微分方程式の解

• 微分演算子 をラプラス変換（制御で説明）して解く
方法もある
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1.2 電気回路
1.2.4 過渡現象並びにひずみ波

• 直流回路の過渡解析
– ラプラス変換での解き方

ラプラス変換

v
dt

d
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1.2 電気回路
1.2.4 過渡現象並びにひずみ波

• 過渡解析方法の応用
–発電機の動揺方程式の解き方

• 電動機トルクTm, 回転軸の慣性モーメントJ,角速度に
比例する摩擦トルクk,回転速度に無関係な負荷トルク
T

• 一階の微分方程式として，電気回路と同様に求解す
ればよい

ωω
dt

d
JkTTm =−−



1.2 電気回路
1.2.4 過渡現象並びにひずみ波

• 歪波形（交流・定常解）
– フーリェ級数展開→複数の周波数成分に分解

–歪波交流実効値→周波数成分の二乗和平方根

–力率
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1.3 電子回路
1.3.1 半導体

• 絶縁体
– 電子が許容体を完全に占有し，それより上のエネルギー
帯が空。外部から電界を印加しても電流は流れない

• 金属
– 電子がエネルギー帯の一部だけ満たしている。電界を印
加すると，波数の状態が変わり電流が良く流れる

• 半導体
– 絶対零度では絶縁体。温度が上がると充満帯（価電子
帯）から上の空の伝導体に電子が励起され，伝導体の電
子と価電子帯の孔（正孔）が電流を運ぶ → 真性半導体

– 不純物を導入して，伝導電子や正孔を供給し，電気伝導
度を制御する → 不純物半導体



1.3 電子回路
1.3.1 半導体

• 不純物半導体
– N型半導体

» シリコン等の4族（元素の周期表の左から4番目）の真性半導
体にアンチモン(Sb)，リン(P)等の5族の不純物（ドナー）を加え
て作る半導体．

» 結晶を構成するとき電子が余り，自由電子となり電気伝導が行
われる。

– P型半導体
» シリコン等の4族の真性半導体にホウ素(B)，インジウム(In)等
の3族の不純物（アクセプタ）を加えて作る半導体．

» 結晶を構成するとき電子が不足し，正孔となり電気伝導が行わ
れる。

» 自由電子や正孔をキャリアと呼ぶ
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1.3 電子回路
1.3.1 半導体

• ダイオード
– P形半導体とn形半導体を接合した２端子素子(PN接合ダ
イオード)

• 点接触形，接合形などがある
• 高耐電圧用PiN，高速用Schottky

P  N

アノード カソード

電流
出力VI特性

V

I



1.3 電子回路
1.3.1 半導体

• トランジスタ
– 増幅作用を持つ半導体素子
– バイポーラ形とユニポーラ形（電界効果形）がある

• バイポーラ形
– P,N形半導体を組み合わせ，PNP,NPNを構成する

• ユニポーラ形
– NまたはP形の半導体でチャネルを作る。
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1.3 電子回路
1.3.2 整流回路

• 半波整流回路
– 出力電流は正弦波の半分（半波）

• 全波整流回路
– 半周期毎に半波が反転した全波波形
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v
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R

v

i R

v
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1.3 電子回路
1.3.3 増幅回路

• トランジスタの入出力端子の共通接続（接地）点で
三方式に分かれる

– エミッタ接地増幅率β
• ベース電流の変化量に対するコレクタ電流の変化量

– ベース接地電流増幅率α
• エミッタ電流の変化量に対するコレクタ電流の変化量

エミッタ接地 ベース接地 コレクタ接地
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1.3 電子回路
1.3.3 増幅回路

• トランジスタの四端子定数（hパラメータ）
– トランジスタを四端子（二端子対）回路で考える

• Y （アドミタンス）パラメータ

• Z （インピーダンス）パラメータ

• H （ハイブリッド）パラメータ

• G （ハイブリッド）パラメータ
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1.3 電子回路
1.3.3 増幅回路

• トランジスタの四端子定数（hパラメータ）
– トランジスタの四端子（二端子対）回路
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•hr :入力端開放電圧帰還比
•hf :出力端短絡電流増幅率
•ho[S] :入力端開放入力アドミタンス

第二添え字に，トランジスタの接地方式をつける
例:hfe→ エミッタ接地電流増幅率
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1.3 電子回路
1.3.4 発振回路

• 増幅回路の出力の一部を正帰還して発振回路を構成する

– 増幅回路の増幅率

– 帰還回路の増幅率

– 回路全体の増幅率
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1.3 電子回路
1.3.4 発振回路

• ハートレー発振回路
– コイルにセンタータップを設け，
この端子を帰還に用いる

– 発振周波数

• コルピッツ発振回路
– コンデンサを分割し，
帰還に用いる

– 発振周波数
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1.3 電子回路
1.3.4 発振回路

• RC形発振回路
– 移相形発振回路は，一段毎に位相が60°変化（3段）
– 180°移相する周波数で発振する

– 移相の段数で，発振周波数とトランジスタの必要利得が変化する

– 微分形と積分形がある
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1.3 電子回路
1.3.5 演算増幅器（オペアンプ）

• オペアンプ
– 加算，積分等の演算回路に用いる
– 同相入力端子（+）と，逆相（反転）入力端子（-），出力端子を持つ

– 理想的なオペアンプ
• 入力インピーダンス∞
• 出力インピーダンス0

• 増幅度∞

( )12 VVVout −=α

V1 ＋

－V2

Vout

増幅度αとすると



1.3 電子回路
1.3.5 演算増幅器（オペアンプ）

• オペアンプ
– 同相（非反転）増幅回路

– 逆相（反転）増幅回路
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