
パワーエレトクロニクス
（舟木担当分）

第二回

平成17年6月6日月曜日 3限目

続ダイオード整流回路
•全波整流回路
•倍電圧整流回路



単相半波整流回路
• 容量負荷の補足

– リップル（脈動）成分を求める
• 直流出力電圧最大値
• 直流出力電圧最小値
• 電圧脈動幅

• 仮定により簡略化し，脈動幅を求める
– 仮定 平滑コンデンサ容量が十分大きい

– 電圧脈動幅
» RC大で脈動が小さくなる
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単相半波整流回路
• 容量負荷の補足

– ダイオード電流ピーク値を求める
• 整流回路は容量負荷にパルス状の電流を流す

– ダイオード電流

» 導通期間が小さい場合
T=π/2付近

– ダイオードの導通期間Δtを求める
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単相半波整流回路
• 容量負荷の補足

– ダイオード電流を求める
• ダイオード平均電流

– 平滑コンデンサへの充電電荷

– ダイオードピーク電流

• Cが大きいと電流が大きくなる
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単相半波整流回路の応用

• 二相半波整流回路
– 回路図
– 変圧器のセンタータップを用いて，単相半波
整流回路を並列接続

• 高調波低減
• 変圧器の利用率低
• 整流素子の必要耐圧が大

– 電圧電流波形の図

波形は全波整流回路と同様になるので，後で説明



単相全波整流回路

• 交流の正負両半サイクルを利用
• 回路形状からHブリッジと呼ばれる

– 抵抗負荷
• 出力直流電圧を求める

– 電源電圧

– 直流出力電圧edの平均値Edは？

•回路図
•電圧・電流波形の図

tVv ωsin2=

[ ] [ ]11
2

cos
2

sin2
2
2

2
1

2
1

0

0

2

0

2

0

+=−=

=





 −+==

∫

∫∫∫

π
ω

π

ωω
π

ωω
π

ω
π

π

π

π

π

ππ

V
t

V

tdtV

tdvtdvtdeE dd

π
V

Ed
22

=∴

半波整流回路の
2倍電圧



単相全波整流回路
• 抵抗負荷

– 出力電圧波形に含まれる高調波
• 出力電圧edのフーリェ級数展開
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単相全波整流回路
• 抵抗負荷

– 出力電圧波形に含まれる高調波
• 出力電圧edのフーリェ級数展開
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単相全波整流回路
• 抵抗負荷

– 出力電圧波形に含まれる高調波
• 出力電圧edのフーリェ級数展開

但し，平均直流電圧
を1として規格化
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単相全波整流回路
• 誘導負荷

– 電圧・電流の振る舞い
• 電源電圧

• 全波整流時の導通角 360度
– 半波整流時の導通角 > 180度

• 周期定常状態を求めてみよう
– ダイオードは順方向バイアス電圧印加で導通（点弧）
（後の講義で行うサイリスタの場合点弧制御可能）

» D1, D1’導通時（0≦ωt ≦π，v≧0）

» D2, D2’導通時（π≦ωt≦2π，v≦0）

•回路図
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単相全波整流回路
• 誘導負荷

– 電圧・電流の振る舞い
• 周期定常状態を求めてみよう

– 解析条件
» D1,D1’導通時とD2,D2’導通時は極性が異なる半波
対称（直流出力は同極性）

» D1,D1’からD2, D2’への転流時（ωt =π）に電流は
連続

– ラプラス変換を用いて回路方程式を求解する(t=0基準)
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単相全波整流回路
• 誘導負荷

– 電圧・電流の振る舞い
• 周期定常状態を求めてみよう
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単相全波整流回路
• 誘導負荷

– 電圧・電流の振る舞い
• 周期定常状態を求めてみよう

– 半波対称・電流連続条件

( )
( )[ ] t

d
t

t
d

t
d

L
R

L
R

L
R

L
R

eitRteL
LR

V

eitRtLLe
LR

V
i

−−

−−

++−
+

=

++−
+

=

0222

0222

sincos
2

sincos
2

ωωω
ω

ωωωω
ω

( ) ( ) ( )[ ] ππ ππω
ω

π L
R

L
R

eiReL
LR

V
iii dddd

−− ++−
+

=== 02220 sincos
2

0

( ) ( )ππ ωω

ω
ω

L
R

L
R

e
LR
LV

eid
−− +

+
=− 1

2
1 2220



単相全波整流回路
• 誘導負荷

– 電圧・電流の振る舞い
• 周期定常状態を求めてみよう

– 電流初期値
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単相全波整流回路
• 誘導負荷

– 電圧・電流の振る舞い
• 出力電流波形
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単相全波整流回路
• 誘導負荷

– 各部の電圧波形を求める
• 負荷抵抗電圧

– 電流と相似波形

• インダクタ電圧
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単相全波整流回路
• 誘導負荷

– 直流出力電圧平均値
• インダクタ電圧

– 定常状態では，エネルギーの入出力が均衡
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単相全波整流回路
• 誘導負荷

– 直流出力電圧平均値
• 負荷抵抗電圧

– 電流と相似波形
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単相全波整流回路
• 容量負荷

– 回路の動作
• D1, D1’導通（D2, D2’非導通）

– 図

• D2, D2’導通（D1, D1’非導通）
– 図

• D1, D1’, D2, D2’非導通
– 図

– 半波整流回路容量性負荷同様に求解
• 導通の条件が一周期に二回

•回路図

•電圧波形



単相全波整流回路
• 容量負荷

– 電圧・電流の振る舞い
• 電源電圧

• 導通期間中，負荷電圧は電源電圧と等しい
– オンは，電源電圧と負荷電圧が等しくなった時点
– オン時，Cを充電するため大電流が流れる（可能性）

• 非導通期間中，RCで閉回路を構成
– Rを介してCが放電
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単相全波整流回路
• 容量負荷

– 出力波形を求める（半周期分）
• 導通開始点 θon

– コンデンサ電圧初期値をvc0とする

• 導通終了点 θoff
– idが0となる
– 導通期間中
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単相全波整流回路
• 容量負荷

– 出力波形を求める
• 非導通期間中

• 非導通開始点θoff

– 出力電圧
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単相全波整流回路
• 容量負荷

– 出力波形を求める
• vc0とed0の接続条件（非導通→導通時点）
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単相全波整流回路
• 容量負荷

– リップル（脈動）成分を求める
• 直流出力電圧最大値
• 直流出力電圧最小値
• 電圧脈動幅

• 仮定により簡略化し，脈動幅を求める
– 仮定 平滑コンデンサ容量が十分大きい

– 電圧脈動幅
» RC大で脈動が小さくなる

Ved 2max =−

ond Ve θsin2min =−

2
πθ ≅off

( ) ( ) CRCRoffonCR eeeoffon
ω
πππ

ωω ππθθπθθ −−+−−+− === 22
11

2sinsinsin

( )on

ondd

V

VVeeV

θ

θ

sin12

sin22minmax

−=

−=−=∆ −−

2
πθ ≅onちょっと苦しいけど

( ) ( )CReVVV on
ω
π

θ −−=−=∆ 12sin12

CR
VV

ω
π

2≅∆
CR

e CR

ω
π

ω
π

−≅− 1 半波整流の
半分



単相全波整流回路
• 容量負荷

– ダイオード電流ピーク値を求める
• 整流回路は容量負荷にパルス状の電流を流す

– ダイオード電流

» 導通期間が小さい場合
T=π/2付近

– ダイオードの導通期間Δtを求める
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単相全波整流回路
• 容量負荷

– ダイオード電流を求める
• ダイオード平均電流

– 平滑コンデンサへの充電電荷

– ダイオードピーク電流

• 半波整流の半分ぐらいの電流
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負荷に対する単相全波整流回路の比較

• 抵抗負荷
– 導通角 =360度（全導通）

• 誘導性負荷
– 導通角 =360度（全導通）

• 出力電圧平均値は抵抗負荷と同じ
• 抵抗負荷より脈動成分小

– 抵抗負荷より出力電圧・電流に含まれる高調波小

• 容量性負荷
– 導通角 < 360度

• 平滑コンデンサへの入力電流に含まれる高調波大
• 平滑コンデンサが，出力電圧の高調波を低減



倍電圧整流回路
• 単相全波2倍電圧整流回路

– 絵
– 動作

• ダイオードの逆耐圧は交流電圧の三倍以上必要
• 半波整流回路出力の合成
• 脈動成分は電源周波数の２倍

• 単相半波2倍電圧整流回路
– コッククロフト・ウォルトン回路とも言う
– 絵
– 動作

• 脈動成分は電源周波数と同じ


