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確率について1

• 確率変数とは
– 値がxとなる確率pが与えられている変数X

• Xの取り得る値は離散値・連続値どちらでも可

• 事象とは
– 確率変数Xが取り得る値の部分集合

– 事象に対する確率の表し方
• P(X=1) 連続値・離散値

• P(5≦X<10) 連続値

• P(X∈A) 離散値
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確率について2

• 確率分布とは
– 確率変数Xと，対応する確率P(X=x)の対応関係

• 確率分布関数とは
– 確率変数Xが，あるxまでとる確率

• 性質
– 単調非減少

–
–

( ) ( )xXPxFX ≤=

( ) 0=∞−XF
( ) 1=∞XF

※確率変数の種類(連続・不連続)
に関係しない
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確率密度関数

• 連続な確率変数:Xに対する確率密度関数:fX(x)
– となる確率を とする時

– 確率密度関数は以下の性質を持つ

( ) ( )∫ ∞−
′′=

x

XX xdxfxF

( ) ( )xF
dx
dxf XX =

( ) 0≥xf X

( ) 1=∫
∞

∞−
dxxfX

dxxXx +≤≤ ( )dxxfX
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一様分布と確率密度関数

• 一様分布の確率密度関数
– 確率変数Xが区間[a,b]で一様分布

( ) ( )
⎪⎩

⎪
⎨
⎧

<<

≤≤
−=

xbax

bxa
abxfX

,0

1
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正規分布と確率密度関数

• 正規分布

– 別名ガウス分布

– 平均μ，分散σ2の確率変数Yの正規分布に対

する確率密度関数
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標準正規分布と確率密度関数

• 標準正規分布
– 平均0,分散1の正規分布

– 標準正規分布の確率密度関数が

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−=

2
exp

2
1 2xxf X π

( )1,0~ NY
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正規分布関数の確率密度関数1

• 正規分布した確率変数Yの確率密度関数

• 性質
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正規分布関数の確率密度関数2

• 変数変換
σ
μ−
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dz
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正規分布関数の確率密度関数3

• これを求める

– 偶関数なので

• これを求めればよい
– 変数変換
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∞
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正規分布関数の確率密度関数4

• 二重積分を考える

– 変数変換(極形式)

• コーシーリーマン条件

( ) 2

0 000

2222

Idydxedyedxe yxyx == ∫ ∫∫∫
∞ ∞ +−∞ −∞ −

θθ sin,cos ryrx ==

θrdrddxdy =

2
0:,0:0:, πθ ↔∞↔⇔∞↔ ryx 第一象限
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正規分布関数の確率密度関数5
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期待値

• 確率変数の平均みたいなもの

• 期待値E[X]
– 確率変数Xが離散分布の場合

• Xの取り得る値の集合M

– 確率変数Xが連続分布の場合

[ ] ( )∑
∈

==
Mx

xXxPXE
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= dxxxfXE X
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正規分布関数の期待値1

• 正規分布した確率変数Yの確率密度関数

• 期待値
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正規分布関数の期待値2

• 変数変換
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正規分布関数の期待値3

• 右辺第一項

• 右辺第二項

• 全体
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正規分布関数の分散1

• 正規分布した確率変数Yの確率密度関数

• 分散
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正規分布関数の分散2

[ ]

∫

∫

∫

∞

∞−

∞

∞−

∞

∞−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−=

dyy

dyyy

dyyyYV

2

2

2

2

2

2
2

2

2
1exp

2

2
1exp

2
2

2
1exp

2
1

σ
μ

πσ
μ

σ
μ

πσ
μ

σ
μ

πσ



2009/5/29 19

正規分布関数の分散3

• 正規分布関数の確率密度関数1参照

• 正規分布関数の期待値2参照
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正規分布関数の分散4

• 変数変換
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正規分布関数の分散5
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正規分布関数の分散6
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多変数の確率分布3
2変数

• 周辺密度関数
– 二つの確率変数X,Y
– Yを無視したXのみに関する確率密度関数を指す

– 同時確率密度関数
と周辺密度関数
の関係

( )xf X ( )yxf YX ,

( ) ( )∫
∞

∞−
= dyyxfxf XYX ,

( )xf X
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分散

• 確率変数Xのばらつきの程度を表す

• 分散V[X]の定義

[ ] [ ]( )[ ]2XEXEXV −=
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分散

• サンプルに対する算出

– 相加平均

– 分散

– 不偏分散

– 標準偏差
• (不偏)分散の平方根

∑
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分散は母集団の
分散より常に小さい

バラツキがでるのは
二個以上
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分散

• 期待値の線形性

• 期待値の線形性を用いた分散σ2の性質
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多変量の確率分布1
2変数

• 同時確率密度関数
– 二つの確率変数X,Y

– XとYの同時確率密度関数

dxxXx +≤≤
dyyYy +≤≤ かつ

となる確率が

( )dxdyyxf XY , と書ける

( )yxfXY ,
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多変数の確率分布2
n変数

• 同時確率密度関数
– n個の確率変数

– 各々

– の同時確率密度関数

nXXX ,,, 21 L

( )nidxxXx iiii ≤≤+≤≤ 1 となる確率が

( ) nnXXX dxdxdxxxxf
n

LLL 2121 ,,,
21

( )nXXX xxxf
n

,,, 2121
LL

nXXX ,,, 21 L
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多変数の確率分布4
n変数

• 周辺密度関数
– n個の確率変数

• m個のみに注目した同時確率密度

• についての周辺密度関数
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確率変数の独立性1

• 二つの確率変数X,Y
• 独立性の定義

( ) ( ) ( )
( ) ( ) ( )yfxfyxf

BYPAXPBYAXP

YXXY =⇔
∈∈=∈∈⇔

,
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確率変数の独立性2

• n個の確率変数

• 独立性の定義

• 自由度

– 独立に選べる確率変数の数

nXXX ,,, 21 L
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条件付き確率1

• 二つの確率変数X,Yが必ずしも独立でない

– YのXに関する条件付き確率密度

• Xが値xを取る条件下でYが値yを取る確率密度
– XとYが独立な場合

• 同時確率密度 と条件付確率密度
の関係

( )xyf |
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条件付き確率2

• 条件
に対する，
となる確率密度関数
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確率変数の和の分布

• 二つの独立な確率変数X,Y
• Z=X+Yの分布

– 事象

– 離散分布

– Z=zとなる確率

xXxzY
zYX

zZ

=−=⇔
=+⇔

=

かつ
MX ∈

( ) ( ) ( )∑
∈

−==
Mx

YX xzPxPzZP

X,Yが独立の時，Y=z-xかつX=xとなる確率

( ) ( )xzPxP YX −


