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第7回 指数型分布族と

一般化線形モデル
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重回帰分析

• 重回帰モデル

– 正規線形モデル

• 説明変数は全て連続変数

• デザイン行列
– 要素が全て1の列

– 説明変数の観測値からなる列
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重回帰分析

• 最小二乗による最小モデルを基準に適合度
評価

– モデル

– 二乗和基準

– 最小二乗推定量
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重回帰分析

• 最小二乗基準の最小値
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重回帰分析

• 最小モデル

– パラメータβはμだけで構成されるスカラー

– デザイン行列Xは全て1のN×1ベクトル
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重回帰分析

• 最小モデル

• 最小モデルの最小二乗基準の最小値

– 観測値の分散に比例

• 最小二乗基準の最悪値
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重回帰分析

• モデルのデータ適合度の指標

– 決定係数

• データの全変動に対するモデルの割合
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重回帰分析

• 決定係数について

– モデルの適合度が最小モデルの適合度と同等の場合，
最小二乗基準の最小値 はデータの全変動 とほぼ
同じになる

• 決定係数は0に近い値になる

– 最大モデルは各観測値Yiにパラメータ が一つ対応。

• パラメータベクトル

• デザイン行列X:NxNの単位行列

• 最小二乗推定値b=y⇔
• 最小二乗推定量の最小値は0となる

• 決定係数は1
• Rを重相関係数
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重回帰分析

• モデルの選択

– 反応変数を説明できる説明変数の必要最小限の
部分集合を見つける

• 逐次的に説明変数を足し引きして検討するステップワ
イズ回帰

– ある説明変数が別の説明変数と強く相関してい
る場合は，共線性または多重共線性が存在する

• 共線性がある場合は，デザイン行列の列ベクトル間に
線形従属関係を持つ

• は特異に近くなる→ の解は不安定XX T ( ) bXbXX TT =
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重回帰分析

• 説明変数間の多重共線性の判定

– 分散拡大因子

• は第j説明変数を反応変数と見なし，その他の変数

に関して重回帰を行った場合の決定係数
– 第j変数と，他の全ての説明変数の間の相関が零
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正規線形モデルに対する分析
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簡単な一般線形モデル

• 正規分布を持つ独立な確率変数Y1,・・・,YN

– 連結関数 (恒等連結関数)
– 正規分布を持つ独立な確率変数e1,・・・,eN

• 確率変数Yiの確率変数eiによる表現
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簡単な一般線形モデル

• パラメータβの最尤推定量

– ただし は正則

– パラメータβの最尤推定量の期待値

• この推定量は不偏推定量
– 母数のβを推定する時，推定量 について
が成り立つならば， をβの不偏推定量という
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簡単な一般線形モデル

• パラメータβの最尤推定量

– 分散共分散行列

• 一般化線形モデルにおいてσ2は局外パラメータ扱い

• 分散の不偏推定量

– 分散共分散行列は推定可能
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簡単な一般線形モデル

• 最小二乗推定

– 評価関数
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簡単な一般線形モデル

– Yは互いに独立かつ分散が同じ場合

kIV =
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最尤推定量と一致
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簡単な一般線形モデル

• 逸脱度
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簡単な一般線形モデル

– パラメータの最尤推定量

• 逸脱度
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簡単な一般線形モデル

• 逸脱度を用いた仮説検定
– 帰無仮説H0:

• デザイン行列X0,最尤推定量b0,逸脱度D0
– 対立仮説H1:

• デザイン行列X1,最尤推定量b1,逸脱度D1
• ただしq<p<N

– H0のH1に対する検定に用いる統計量
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簡単な一般線形モデル

• 対立仮説H1は適合する

• 帰無仮説H0が適合しない場合

– 非心パラメータv
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簡単な一般線形モデル

• F分布

– 帰無仮説H0が正しい場合中心F分布に従う

– 帰無仮説H0が正しくない場合非心F分布に従う

• FがF(p-q,N-p)に対して大きい場合，仮説H0は棄却さ

れる
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中心F分布

• 中心F分布

– 独立な中心カイ二乗確率変数
• X1

2:自由度n
• X2

2:自由度m

– 確率変数各々の自由度割ったものの比
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非心F分布

• 二つの独立な確率変数を各々の自由度で割ったも
のの比

– 非心カイ二乗分布の確率変数

– 中心カイ二乗分布の確率変数

– 非心F分布の平均は，同じ自由度の中心F分布の平均よ

りも大きい
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簡単な一般線形モデル
• パラメータ間の関係(独立性)
• デザイン行列の直交性

– 部分行列

• 互いに直交

– デザイン行列Xが互いに直交する要素で構成さ

れる場合，次式のように分割できる

– 分割したパラメータβによる確率変数yの表現

• Xjは各共変量に対応

– 共変量とは目的変数に影響を与える定量的な変数
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簡単な一般線形モデル

• 直交分割されたデザイン行列Xの性質

– 最尤推定量

• 独立

• 仮説も独立に検定可能
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簡単な一般線形モデル

• モデルの残差

– モデル

– 当てはめ値

– 残差

– 残差ベクトル の分散共分散行列

i
T

ii ebxy +=

iμ̂
ii

T
iii ybxye μ̂ˆ −=−=

ê
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簡単な一般線形モデル

• 射影行列(ハット行列)

– 第i対角成分

• 分散 の推定値

• 標準化残差
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