電カシステム解析論

第2回 送電線路のモデルと インダクタンス1 平成22年10月08日

2010/10/08

電力システム解析論

1

短距離送電線路
(50km以下)
• 送受電端電圧の関係

$$\frac{\dot{E}_s = E_r \cos \theta_r + IR + j(E_r \sin \theta_r + IX)[V]}{E_s = \sqrt{(E_r \cos \theta_r + IR)^2 + (E_r \sin \theta_r + IX)^2}[V]}$$
• 送電端電力

$$P_s = (E_r \cos \theta_r + IR)I[W]$$

$$Q_s = (E_r \sin \theta_r + IX)I[W]$$

$$- 力率 \cos \theta_s = \frac{E_r \cos \theta_r + IR}{\sqrt{(E_r \cos \theta_r + IR)^2 + (E_r \sin \theta_r + IX)^2}}$$
2010/108

2010/10/08

なんで三相交流?			
 伝送容量の比較(Vは線間電圧実効値) 		比率	
 – 単相二線式 • 伝送容量 VI cos θ 			
• 条数2 → 一条当りの伝送容量	$\frac{1}{2}VI\cos\theta$	1	
- 単相三線式	2		
 ・伝送容量 2VI cos θ ・条数3 → 一条当りの伝送容量 - 三相三線式 ・伝送容量 /2VI cos 0 	$\frac{2}{3}VI\cos\theta$	4/3	
 ・	$\frac{1}{\sqrt{3}}VI\cos\theta$	2/√3	
 ● 伝送容量 √3VI cos θ ● 条数4 → 一条当りの伝送容量 – 対称n相n線式 	$\frac{\sqrt{3}}{4}VI\cos\theta$	√3/2	
 ・伝送容量 <u>-</u>VI cos θ ・条数n → -条当りの伝送容量 - 直流方式 ・伝送容量 VI 	$\frac{1}{2}VI\cos\theta$	1	
● 条数n → 一条当りの伝送容量 2010/10/08 電力システム解析論	$\frac{1}{2}VI$	1	2
但しACは実効値なので実質的に2			

2010/10/08

電力システム解析論

14

